Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

trans-Bis(1-cyclohexylpyrrolidin-2-one)dinitratopalladium(II)

Yuya Takahashi and Yasuhisa Ikeda*

Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, 2-12-1-N134 Ookayama, Meguro-ku, Tokyo 152-8550, Japan

Correspondence e-mail: yikeda@nr.titech.ac.jp

Received 26 October 2009; accepted 2 November 2009

Key indicators: single-crystal X-ray study; $T=173 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; R factor $=0.020 ; w R$ factor $=0.052 ;$ data-to-parameter ratio $=17.7$.

In the title compound, $\left[\mathrm{Pd}\left(\mathrm{NO}_{3}\right)_{2}\left(\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{NO}\right)_{2}\right]$, the $\mathrm{Pd}^{\mathrm{II}}$ centre is located on an inversion center and is coordinated in a square-planar geometry by two O atoms of the monodentate nitrate groups and two carbonyl O atoms of the 1-cyclohexyl-pyrrolidin-2-one ligands.

Related literature

For general background to ambidentate ligands, see: Fairlie \& Taube (1985); Rack et al. (2003); Sigel \& Martin (1982). For amide complexes of metal ions, see: Anget et al. (1990); Curtis et al. (1983). Pankratov et al. (2004); Wayland \& Schramm (1969); Rheingold \& Staley (1988). For the structures of ambidentate ligand complexes of $\mathrm{Pd}^{\mathrm{II}}$, see: Johnson et al. (1981); Johansson et al. (2001); Langs et al. (1967). For the structures of nitrate complexes of $\mathrm{Pd}^{\mathrm{II}}$, see: Bennett et al. (1967); Adrian et al. (2006); Rath et al. (1999); Bray et al. (2005); Cerdà et al. (2006); Gromilov et al. (2008); Khranenko et al. (2007); Laligant et al. (1991). For a discussion on the relationship between bond lengths and ligand donicities, see: Gutmann (1967, 1968); Koshino et al. (2005).

Experimental

Crystal data
$\left[\mathrm{Pd}\left(\mathrm{NO}_{3}\right)_{2}\left(\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{NO}\right)_{2}\right]$
$\gamma=68.845$ (2)
$M_{r}=564.91$
Triclinic, $P \overline{1}$
$a=7.6431$ (5) £
$b=9.8892$ (8) A
$c=10.1118$ (7) \AA
$\alpha=60.8650(19)^{\circ}$
$\beta=66.057(2)^{\circ}$

Data collection

Rigaku R-AXIS RAPID
diffractometer
Absorption correction: numerical
(ABSCOR; Higashi, 1999)
$T_{\text {min }}=0.754, T_{\text {max }}=0.943$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.020 \quad 152$ parameters
$w R\left(F^{2}\right)=0.052$
$S=1.07$
2696 reflections
$V=597.24(7) \AA^{3}$
$Z=1$
Mo $K \alpha$ radiation
$\mu=0.83 \mathrm{~mm}^{-1}$
$T=173 \mathrm{~K}$
$0.78 \times 0.41 \times 0.07 \mathrm{~mm}$

5836 measured reflections $R_{\text {int }}=0.021$ 2696 independent reflections 2662 reflections with $I>2 \sigma(I)$

Table 1
Selected bond lengths (\AA).

$\mathrm{Pd}(1)-\mathrm{O}(1)$	$2.0092(11)$	$\mathrm{Pd}(1)-\mathrm{O}(2)$	$2.0112(15)$

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/ MSC, 2006); program(s) used to solve structure: SIR92 (Altomare et al., 1994) and DIRDIF99 (Beurskens et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: CrystalStructure.

The authors would like to thank Takeshi Kawasaki for his useful comments.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BR2124).

References

Adrian, R. A., Zhu, S., Daniels, L. M., Tiekink, E. R. T. \& Walmsley, J. A. (2006). Acta Cryst. E62, m1422-m1424.

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Cryst. 27, 435-435.
Anget, R. L., Fairlie, D. P. \& Jackson, W. G. (1990). Inorg. Chem. 29, $20-28$.
Bennett, M. J., Cotton, F. A., Weaver, D. L., Williams, R. J. \& Watson, W. H. (1967). Acta Cryst. 23, 788-796.

Beurskens, P. T., Admiraal, G., Burskens, G., Bosman, W. P., de Gelder, R., Isreal, R. \& Smits, J. M. M. (1999). The DIRDIF99 Program System. Technical Report of the Crystallography Laboratory, Universityu of Nijmegen, The Netherlands.
Bray, D. J., Clegg, J. K., Liao, L.-L., Lindoy, L. F., McMurtrie, J. C., Schilter, D., Wei, G. \& Won, T.-J. (2005). Acta Cryst. E61, m1940-m1942.
Cerdà, M. M., Costisella, B. \& Lippert, B. (2006). Inorg. Chim. Acta, 359, 1485-1488.
Curtis, N. J., Lawrence, G. A. \& Sargeson, A. M. (1983). Aust. J. Chem. 36, 1495-1501.
Fairlie, D. P. \& Taube, H. (1985). Inorg. Chem. 24, 3199-3206.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Gromilov, S. A., Khranenko, S. P., Baidina, I. A., Virovets, A. V. \& Peresypkina, E. V. (2008). J. Struct. Chem. 49, 160-164.

metal-organic compounds

Gutmann, V. (1967). Coord. Chem. Rev. 2, 239-256.
Gutmann, V. (1968). Coordination Chemistry in Non-Aqueous Solutions, p. 19. Vienna, New York: Springer.
Higashi, T. (1999). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Johansson, M. H. \& Oskarsson, A. (2001). Acta Cryst. C57, 1265-1267.
Johnson, B. F. G., Puga, J. \& Raithby, P. R. (1981). Acta Cryst. B37, 953-956.
Khranenko, S. P., Baidina, I. A. \& Gromilov, S. A. (2007). J. Struct. Chem. 48, 1152-1155.
Koshino, N., Harada, M., Nogami, M., Morita, Y., Kikuchi, T. \& Ikeda, Y. (2005). Inorg. Chim. Acta, 358, 1857-1864.

Laligant, Y., Ferey, G. \& Le Bail, A. (1991). Mater. Res. Bull. 26, 269-275.
Langs, D. A., Hare, C. R. \& Little, R. G. (1967). Chem. Commun. pp. 10801081.

Pankratov, A. N., Borodulin, V. B. \& Chaplygina, O. A. (2004). J. Coord. Chem. 57, 665-675.
Rack, J. J., Rachford, A. A. \& Shelker, A. M. (2003). Inorg. Chem. 42, 73577359.

Rath, N. P., Stockland, R. A. \& Anderson, G. K. (1999). Acta Cryst. C55, 494 496.

Rheingold, A. L. \& Staley, D. L. (1988). Acta Cryst. C44, 572-574.
Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC (2006). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Sigel, H. \& Martin, R. B. (1982). Chem. Rev. 82, 385-420.
Wayland, B. B. \& Schramm, R. F. (1969). Inorg. Chem. 8, 971-976.

supplementary materials

trans-Bis(1-cyclohexylpyrrolidin-2-one)dinitratopalladium(II)

Y. Takahashi and Y. Ikeda

Comment

Ambidentate ligands are known as ligands with two different coordination cites, such as thiocyanate ion (N and S), cyanate ion (N and O), dimethyl sulfoxide ($\mathrm{DMSO}, \mathrm{O}$ and S), and N, N-dimethylformamide (DMF, N and O) (Fairlie et al., 1985; Rack et al., 2003; Sigel et al., 1982). For amide complexes of metal ions classified as hard Lewis acids, such as $\left[M\left(\mathrm{NH}_{3}\right)_{5} \text { (amide) }\right]^{3+}(M=\mathrm{Co}, \mathrm{Cr})$ (Anget et al., 1990; Curtis et al., 1983), the O-bonded form is thermodynamically and kinetically more favored than the N -bonded form. On the other hand, $\mathrm{Pd}^{\text {II }}$ classified as a soft Lewis acid usually exhibits a weak affinity to O-donor ligands. Hence, amide compounds should coordinate to $\mathrm{Pd}^{\mathrm{II}}$ through a nitrogen atom more preferably. In fact, it has been known that the $\mathrm{Pd}^{\mathrm{II}}$ complex with 2-pyrrolidone is N-bonded form, i.e., cisPdCl_{2} (pyrroline-2-ol) 2 (Pankratov et al., 2004). However, $\mathrm{Pd}^{\mathrm{II}}$ complexes with O-bonded amides have been also reported, e.g., $\mathrm{PdCl}_{2}(L)_{2}, \mathrm{Pd}(L)_{4} \cdot\left(\mathrm{ClO}_{4}\right)_{2}(L=\mathrm{DMF}, N, N$-dimethylacetamide, N-methyl-acetamide, and N-methylformamide) (Wayland et al., 1969), and $\operatorname{Pd}(\mathrm{DMF})_{2}$ (o-(N-methylliminomethyl)phenyl). BF_{4} (Rheingold et al., 1988). In a similar manner to amides, $\mathrm{Pd}^{\mathrm{II}}$ complexes with $\mathrm{S}-$ and O-bonded DMSO have been reported, such as trans- $\mathrm{PdCl}_{2}(\mathrm{DMSO})_{2}$ with two S-bonded DMSO, and $\mathrm{Pd}(\mathrm{DMSO})_{4}\left(\mathrm{BF}_{4}\right)_{2}$. DMSO with two $\mathrm{S}-$ and O-bonded DMSO and a solvated DMSO (Johansson et al., 1981; Johansson et al., 2001; Langs et al., 1967). In $\mathrm{Pd}^{\mathrm{II}}$ nitrate complexes, some crystal structures with $\mathrm{S}^{-}, \mathrm{P}-$, $\mathrm{N}-$, or O-donor ligand have been reported, e.g., cis- $\mathrm{Pd}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{DMSO})_{2}$, (Bennett et al., 1967) $\mathrm{Pd}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{dppm}) .3 \mathrm{CDCl} \mathrm{C}_{3}$ (dppm $=\operatorname{bis}\left(\right.$ diphenylphosphino)methane), (Adrian et al., 2006; Rath et al., 1999) enPd $\left(\mathrm{NO}_{3}\right)_{2}$ (en = ethylenediamine), (Bray et al.,2005; Cerdà et al., 2006) and trans $-\operatorname{Pd}\left(\mathrm{NO}_{3}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$ (Gromilov et al., 2008; Khranenko et al., 2007; Laligant et al., 1991). In all of these complexes, nitrate coordinates to $\mathrm{Pd}^{\mathrm{II}}$ as the oxygen donor unidentate ligand. So far as we know, trans$\mathrm{Pd}\left(\mathrm{NO}_{3}\right)_{2}(L)_{2}\left(L\right.$: oxygen donor unidenntate ligand) is only trans $-\mathrm{Pd}\left(\mathrm{NO}_{3}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$ and $\mathrm{Pd}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{O} \text {-bonded amide })_{2}$ has not been reported. We prepared $\mathrm{Pd}^{\mathrm{II}}$ nitrate complex with the O-bonded amide, trans $-\mathrm{Pd}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{NCP})_{2}(\mathrm{NCP}=N$-cycro-hexyl-2-pyrrolidone), and analyzed its crystal structure using the single-crystal X-ray analytical method. An ORTEP view of trans $-\mathrm{Pd}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{NCP})_{2}$ is shown in Fig. 1. In this complex, the configuration around Pd atom is square planar. The nitrate and NCP coordinate to $\mathrm{Pd}^{\mathrm{II}}$ through their oxygen atoms. The cyclohexyl group of NCP is torsional to pyrrolidone ring. Fig. 2 shows the configuration of coordinated nitrate in trans $-\mathrm{Pd}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{NCP})_{2}$. From this figure, it is found that the nitrate is planar with $\mathrm{O}-\mathrm{N}-\mathrm{O}$ angles close to 120°, and that the distance of $\mathrm{Pd} \cdots \mathrm{O}(3)$ is longer than $\mathrm{Pd} \cdots \mathrm{O}(2)$, and almost same as that of trans $-\mathrm{Pd}\left(\mathrm{NO}_{3}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(2.926 \AA\right.$; Khranenko et al. (2007). This reflects the fact that in the trans $-\mathrm{Pd}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{NCP})_{2}$ complex nitrate coordinates to $\mathrm{Pd}^{\mathrm{II}}$ as the unidentate ligand. As mentioned above, the skeletal structure of trans $-\mathrm{Pd}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{NCP})_{2}$ is almost same as that of trans $-\mathrm{Pd}\left(\mathrm{NO}_{3}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$. However, the $\mathrm{Pd}-\mathrm{O}\left(\mathrm{NO}_{3}\right)$ distance in trans $-\mathrm{Pd}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{NCP})_{2}$ is slightly longer than that in trans $-\mathrm{Pd}\left(\mathrm{NO}_{3}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(1.999(5) \AA)($ Khranenko et al. $(2007))$, and the $\mathrm{Pd}-\mathrm{O}(\mathrm{NCP})$ distance is 0.02 \AA shorter than the $\mathrm{Pd}-\mathrm{O}$ (water) distance (2.030 (5) \AA). The differences in $\mathrm{Pd}-\mathrm{O}(L)\left(L=\mathrm{H}_{2} \mathrm{O}\right.$ or NCP) distances are considered to be due to those in electron donicity of L, that is, the donor number (28.6) of NCP is larger than that (18.0) of water (Gutmann, 1967, Gutmann, 1968, Koshino et al., 2005). Thus, the NCP molecules should more strongly coordinate

supplementary materials

to the $\mathrm{Pd}\left(\mathrm{NO}_{3}\right)_{2}$ moiety than water. This may result in a slightly longer distance of $\mathrm{Pd}-\mathrm{O}\left(\mathrm{NO}_{3}\right)$ in trans $-\mathrm{Pd}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{NCP})_{2}$ than in trans- $\mathrm{Pd}\left(\mathrm{NO}_{3}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$. Infrared spectrum of trans $-\mathrm{Pd}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{NCP})_{2}$ in the solid state was measured as a CaF_{2} pellet by Shimadzu FT-IR-8400S spectrophotometer. The carbonyl stretching band of NCP was observed at $1593 \mathrm{~cm}^{-1}$, which is lower frequency than that $\left(1670 \mathrm{~cm}^{-1}\right)$ of free NCP. The lower shift value $\left(\Delta v=77 \mathrm{~cm}^{-1}\right)$ is comparable to those (68-107 cm^{-1}) for other $\mathrm{Pd}^{\mathrm{II}}$ amide complexes(Wayland et al., 1969). This supports the result of single-crystal analysis that NCP coordinates to the $\mathrm{Pd}\left(\mathrm{NO}_{3}\right)_{2}$ moiety through carbonyl oxygen atom. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of solution prepared by dissolving trans- $\mathrm{Pd}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{NCP})_{2}$ and $\left(\mathrm{CH}_{3}\right)_{4} \mathrm{Si}$ into CDCl_{3} were also measured using Jeol ECX- 400 NMR spectrometer (${ }^{1} \mathrm{H}$: 399.8 MHz). The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR signals corresponding to free NCP were not observed. Most of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR signals due to coordinated NCP were found to be shifted to lower field compared with those of free NCP. In ${ }^{1} \mathrm{H}$ NMR spectrum, the signals of methyne $(\mathbf{C H})$ proton in cyclohexyl group and the methylene protons $\left(\mathrm{N}-\mathrm{CH}_{2}\right)$ in pyrrolidone ring were observed as a broad multiplet at 3.78 p.p.m. (0.14 p.p.m. high field shift compared with that of free NCP) and triplet at 3.58 and 3.50 p.p.m. (0.02 and 0.10 p.p.m. low field shift compared with those of free NCP), respectively. In the ${ }^{13} \mathrm{C}$ NMR spectrum, carbonyl carbon and methylene carbon $\left(\mathrm{N}-\mathrm{CH}_{2}\right)$ in pyrrolidone ring were observed at 180.49 p.p.m. (6.44 p.p.m. low field shift compared with that of free NCP) and 46.09 p.p.m. (3.22 p.p.m. low field shift compared with that of free NCP). These results suggest that even in CDCl_{3} solution two NCP molecules coordinate to $\mathrm{Pd}^{\mathrm{II}}$. It is worth noting that in spite of the soft Lewis acid all coordination sites of $\mathrm{Pd}^{\mathrm{II}}$ are occupied by oxygen donor ligands. The present result should be first example for the crystal analysis of trans $-\mathrm{Pd}\left(\mathrm{NO}_{3}\right)_{2}(L)_{2}$ complex, in which L is the ambidentate ligand with $\mathrm{O}-$ and N -bonding sites.

Experimental

The crystal of trans- $\mathrm{Pd}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{NCP})_{2}$ was prepared by adding $\mathrm{Pd}\left(\mathrm{NO}_{3}\right)_{2} .2 \mathrm{H}_{2} \mathrm{O}(0.8218 \mathrm{~g}, 3.084 \mathrm{mmol}$, Kojima Chemicals Co., Inc., $38.85 \mathrm{wt} \%$ in Pd) to $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of $\mathrm{NCP}(1.035 \mathrm{~g}, 6.186 \mathrm{mmol}$, Aldrich, 99%). The mixture was refluxed for 30 min with stirring and filtered off any undissolved $\mathrm{Pd}{ }^{\text {II }}$ nitrate. The resulting solution was concentrated to approximately 5 ml , and then diethyl ether was added to form bilayer and to precipitate the complexes. Brown crystals were formed (yield $1.065 \mathrm{~g}, 59 \%$). Elemental analyses were carried out by LECO CHNS-932 elemental analyzer. Cacl. for $\mathrm{H}_{34} \mathrm{C}_{20} \mathrm{~N}_{4} \mathrm{O}_{8} \mathrm{Pd}$: C, 42.52; H, 6.07; N, 9.92. Found: C, 42.25; H, 5.80; N, 9.88\%.

Refinement

The H atoms of methylene and methyne were placed in calculated positions with $\mathrm{C}-\mathrm{H}=0.99$ and 1.00 , respectively. All H atoms were refined as riding on their parent atoms with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$

Figures

Fig. 1. The $O R T E P$ view of trans $-\mathrm{Pd}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{NCP})_{2}$ complex with the atomic numbering. The thermal ellipsoids are drawn at 50% probability.

Fig. 2. The configuration of coordinated nitrate in trans $-\mathrm{Pd}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{NCP})_{2}$.

Fig. 3. The packing view of trans $-\mathrm{Pd}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{NCP})_{2}$ complex. The thermal ellipsoids are drawn at 50% probability.

trans-Bis(1-cyclohexylpyrrolidin-2-one)dinitratopalladium(II)

Crystal data

$\left[\mathrm{Pd}\left(\mathrm{NO}_{3}\right)_{2}\left(\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{NO}\right)_{2}\right]$
$M_{r}=564.91$
Triclinic, $P \overline{1}$
Hall symbol: -P 1
$a=7.6431$ (5) \AA
$b=9.8892$ (8) \AA
$c=10.1118$ (7) \AA
$\alpha=60.8650(19)^{\circ}$
$\beta=66.057$ (2) ${ }^{\circ}$
$\gamma=68.845(2)^{\circ}$
$V=597.24(7) \AA^{3}$
$Z=1$
$F_{000}=292.00$
$D_{\mathrm{x}}=1.571 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71075 \AA$
Cell parameters from 5845 reflections
$\theta=3.3-27.5^{\circ}$
$\mu=0.83 \mathrm{~mm}^{-1}$
$T=173 \mathrm{~K}$
Platelet, brown
$0.78 \times 0.41 \times 0.07 \mathrm{~mm}$

Data collection

Rigaku R-AXIS RAPID
diffractometer
Detector resolution: 10.00 pixels mm^{-1}
$T=173 \mathrm{~K}$
ω scans
Absorption correction: numerical (ABSCOR; Higashi, 1999)
$T_{\text {min }}=0.754, T_{\text {max }}=0.943$
5836 measured reflections
2696 independent reflections
2662 reflections with $F^{2}>2 \sigma\left(F^{2}\right)$
$R_{\mathrm{int}}=0.021$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-9 \rightarrow 9$
$k=-12 \rightarrow 12$
$l=-11 \rightarrow 13$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.020$
$w R\left(F^{2}\right)=0.052$
$S=1.07$

Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained

$$
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0294 P)^{2}+0.1351 P\right]
$$

where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$

supplementary materials

2696 reflections
152 parameters
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
$\mathrm{Pd}(1)$	1.0000	1.0000	0.0000	0.02155 (5)
$\mathrm{O}(1)$	0.92669 (15)	0.93354 (13)	0.23446 (12)	0.0268 (2)
$\mathrm{O}(2)$	1.18410 (17)	1.12278 (13)	-0.03171 (13)	0.0308 (2)
$\mathrm{O}(3)$	0.98979 (19)	1.33981 (14)	-0.14453 (18)	0.0454 (3)
$\mathrm{O}(4)$	1.25913 (19)	1.34980 (16)	-0.12849 (17)	0.0447 (3)
$\mathrm{N}(1)$	1.14168 (19)	1.27768 (16)	-0.10479 (15)	0.0289 (2)
N (2)	0.99744 (17)	0.78446 (13)	0.46810 (13)	0.0201 (2)
C(1)	1.04947 (19)	0.84244 (15)	0.31243 (15)	0.0200 (2)
C(2)	1.2637 (2)	0.78476 (17)	0.24741 (16)	0.0246 (2)
C(3)	1.3405 (2)	0.70029 (19)	0.39282 (17)	0.0283 (3)
C(4)	1.1591 (2)	0.6721 (2)	0.53523 (17)	0.0308 (3)
C(5)	0.79357 (19)	0.80910 (15)	0.56480 (15)	0.0197 (2)
C(6)	0.7016 (2)	0.67022 (18)	0.61976 (19)	0.0284 (3)
C(7)	0.4882 (2)	0.6965 (2)	0.7192 (2)	0.0320 (3)
C(8)	0.4713 (2)	0.7307 (2)	0.85611 (18)	0.0331 (3)
C(9)	0.5632 (2)	0.8697 (2)	0.79808 (19)	0.0329 (3)
C(10)	0.7782 (2)	0.8389 (2)	0.70401 (18)	0.0288 (3)
H(1)	1.4309	0.5987	0.3943	0.034*
H(2)	1.4106	0.7671	0.3930	0.034*
H(3)	0.7185	0.9056	0.4966	0.024*
H(4)	1.1427	0.5617	0.5814	0.037*
H(5)	1.1670	0.6947	0.6176	0.037*
H(6)	0.8353	0.9314	0.6650	0.035*
H(7)	0.8527	0.7458	0.7733	0.035*
H(8)	0.5543	0.8869	0.8894	0.040*
H(9)	0.4907	0.9666	0.7304	0.040*
H(10)	0.3316	0.7544	0.9134	0.040*
H(11)	0.5371	0.6359	0.9307	0.040*
H(12)	0.4091	0.7865	0.6515	0.038*
H(13)	0.4353	0.6011	0.7612	0.038*
H(14)	1.3286	0.8742	0.1665	0.030*
H(15)	1.2847	0.7108	0.2003	0.030*
H(16)	0.7772	0.5718	0.6833	0.034*
H(17)	0.7068	0.6578	0.5268	0.034*

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
$\operatorname{Pd}(1)$	$0.02369(9)$	$0.02268(9)$	$0.01332(8)$	$-0.00108(5)$	$-0.00923(5)$	$-0.00290(6)$

sup-4

supplementary materials

$\mathrm{O}(1)$	$0.0252(5)$	$0.0317(5)$	$0.0153(4)$	$0.0013(4)$	$-0.0097(3)$	$-0.0052(4)$
$\mathrm{O}(2)$	$0.0337(5)$	$0.0282(5)$	$0.0285(5)$	$-0.0043(4)$	$-0.0169(4)$	$-0.0047(4)$
$\mathrm{O}(3)$	$0.0352(6)$	$0.0284(5)$	$0.0613(8)$	$-0.0068(4)$	$-0.0266(6)$	$0.0010(5)$
$\mathrm{O}(4)$	$0.0404(7)$	$0.0437(7)$	$0.0463(7)$	$-0.0220(5)$	$-0.0156(5)$	$-0.0031(6)$
$\mathrm{N}(1)$	$0.0270(6)$	$0.0299(6)$	$0.0209(5)$	$-0.0104(4)$	$-0.0063(4)$	$-0.0008(4)$
$\mathrm{N}(2)$	$0.0224(5)$	$0.0203(5)$	$0.0152(5)$	$-0.0035(4)$	$-0.0084(4)$	$-0.0035(4)$
$\mathrm{C}(1)$	$0.0242(6)$	$0.0195(5)$	$0.0162(5)$	$-0.0047(4)$	$-0.0083(4)$	$-0.0049(4)$
$\mathrm{C}(2)$	$0.0229(6)$	$0.0275(6)$	$0.0181(6)$	$-0.0022(5)$	$-0.0075(5)$	$-0.0059(5)$
$\mathrm{C}(3)$	$0.0241(7)$	$0.0327(7)$	$0.0221(6)$	$-0.0021(5)$	$-0.0110(5)$	$-0.0055(5)$
$\mathrm{C}(4)$	$0.0262(7)$	$0.0367(7)$	$0.0188(6)$	$-0.0018(5)$	$-0.0123(5)$	$-0.0017(5)$
$\mathrm{C}(5)$	$0.0228(6)$	$0.0197(5)$	$0.0151(5)$	$-0.0050(4)$	$-0.0067(4)$	$-0.0042(4)$
$\mathrm{C}(6)$	$0.0278(7)$	$0.0286(7)$	$0.0356(8)$	$-0.0083(5)$	$-0.0092(5)$	$-0.0160(6)$
$\mathrm{C}(7)$	$0.0262(7)$	$0.0341(7)$	$0.0388(8)$	$-0.0127(5)$	$-0.0082(6)$	$-0.0132(6)$
$\mathrm{C}(8)$	$0.0292(7)$	$0.0403(8)$	$0.0232(7)$	$-0.0150(6)$	$-0.0022(5)$	$-0.0064(6)$
$\mathrm{C}(9)$	$0.0331(8)$	$0.0436(8)$	$0.0268(7)$	$-0.0137(6)$	$-0.0004(6)$	$-0.0199(7)$
$\mathrm{C}(10)$	$0.0311(7)$	$0.0397(8)$	$0.0242(7)$	$-0.0169(6)$	$-0.0014(5)$	$-0.0174(6)$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{Pd}(1)-\mathrm{O}(1)$	$2.0092(11)$
$\mathrm{Pd}(1)-\mathrm{O}(1)^{\mathrm{i}}$	$2.0092(11)$
$\mathrm{Pd}(1)-\mathrm{O}(2)$	$2.0112(15)$
$\mathrm{Pd}(1)-\mathrm{O}(2)^{\mathrm{i}}$	$2.0112(15)$
$\mathrm{O}(1)-\mathrm{C}(1)$	$1.2699(17)$
$\mathrm{O}(2)-\mathrm{N}(1)$	$1.3158(16)$
$\mathrm{O}(3)-\mathrm{N}(1)$	$1.229(2)$
$\mathrm{O}(4)-\mathrm{N}(1)$	$1.222(2)$
$\mathrm{N}(2)-\mathrm{C}(1)$	$1.3200(17)$
$\mathrm{N}(2)-\mathrm{C}(4)$	$1.4754(19)$
$\mathrm{N}(2)-\mathrm{C}(5)$	$1.4713(15)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.5020(17)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.535(2)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.5304(18)$
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.525(2)$
$\mathrm{C}(5)-\mathrm{C}(10)$	$1.525(2)$
$\mathrm{C}(6)-\mathrm{C}(7)$	$1.5351(19)$
$\mathrm{C}(7)-\mathrm{C}(8)$	$1.525(3)$
$\mathrm{C}(8)-\mathrm{C}(9)$	$1.518(3)$
$\mathrm{O}(1)-\mathrm{Pd}(1)-\mathrm{O}(1)^{\mathrm{i}}$	$180.00(7)$
$\mathrm{O}(1)-\mathrm{Pd}(1)-\mathrm{O}(2)$	$89.93(5)$
$\mathrm{O}(1)-\mathrm{Pd}(1)-\mathrm{O}(2)^{\mathrm{i}}$	$90.07(5)$
$\mathrm{O}(1)^{\mathrm{i}}-\mathrm{Pd}(1)-\mathrm{O}(2)$	$90.07(5)$
$\mathrm{O}(1)^{\mathrm{i}}-\mathrm{Pd}(1)-\mathrm{O}(2)^{\mathrm{i}}$	$89.93(5)$
$\mathrm{O}(2)-\mathrm{Pd}(1)-\mathrm{O}(2)^{\mathrm{i}}$	$180.00(6)$
$\mathrm{Pd}(1)-\mathrm{O}(1)-\mathrm{C}(1)$	$121.33(8)$
$\mathrm{Pd}(1)-\mathrm{O}(2)-\mathrm{N}(1)$	$117.47(11)$
$\mathrm{O}(2)-\mathrm{N}(1)-\mathrm{O}(3)$	$118.89(17)$

$\mathrm{C}(9)-\mathrm{C}(10)$	$1.533(2)$
$\mathrm{C}(2)-\mathrm{H}(14)$	0.990
$\mathrm{C}(2)-\mathrm{H}(15)$	0.990
$\mathrm{C}(3)-\mathrm{H}(1)$	0.990
$\mathrm{C}(3)-\mathrm{H}(2)$	0.990
$\mathrm{C}(4)-\mathrm{H}(4)$	0.990
$\mathrm{C}(4)-\mathrm{H}(5)$	0.990
$\mathrm{C}(5)-\mathrm{H}(3)$	1.000
$\mathrm{C}(6)-\mathrm{H}(16)$	0.990
$\mathrm{C}(6)-\mathrm{H}(17)$	0.990
$\mathrm{C}(7)-\mathrm{H}(12)$	0.990
$\mathrm{C}(7)-\mathrm{H}(13)$	0.990
$\mathrm{C}(8)-\mathrm{H}(10)$	0.990
$\mathrm{C}(8)-\mathrm{H}(11)$	0.990
$\mathrm{C}(9)-\mathrm{H}(8)$	0.990
$\mathrm{C}(9)-\mathrm{H}(9)$	0.990
$\mathrm{C}(10)-\mathrm{H}(6)$	0.990
$\mathrm{C}(10)-\mathrm{H}(7)$	0.990
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{H}(2)$	110.7
$\mathrm{H}(1)-\mathrm{C}(3)-\mathrm{H}(2)$	108.8
$\mathrm{~N}(2)-\mathrm{C}(4)-\mathrm{H}(4)$	111.1
$\mathrm{~N}(2)-\mathrm{C}(4)-\mathrm{H}(5)$	111.1
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(4)$	111.1
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(5)$	111.1
$\mathrm{H}(4)-\mathrm{C}(4)-\mathrm{H}(5)$	109.0
$\mathrm{~N}(2)-\mathrm{C}(5)-\mathrm{H}(3)$	107.6
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{H}(3)$	107.7

$\mathrm{O}(2)-\mathrm{N}(1)-\mathrm{O}(4)$	116.54 (14)
$\mathrm{O}(3)-\mathrm{N}(1)-\mathrm{O}(4)$	124.58 (13)
$\mathrm{C}(1)-\mathrm{N}(2)-\mathrm{C}(4)$	112.87 (10)
$\mathrm{C}(1)-\mathrm{N}(2)-\mathrm{C}(5)$	123.33 (12)
$\mathrm{C}(4)-\mathrm{N}(2)-\mathrm{C}(5)$	123.11 (10)
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{N}(2)$	121.72 (11)
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	127.06 (11)
$\mathrm{N}(2)-\mathrm{C}(1)-\mathrm{C}(2)$	111.21 (11)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	103.45 (11)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	105.44 (12)
$\mathrm{N}(2)-\mathrm{C}(4)-\mathrm{C}(3)$	103.45 (10)
$\mathrm{N}(2)-\mathrm{C}(5)-\mathrm{C}(6)$	110.78 (12)
$\mathrm{N}(2)-\mathrm{C}(5)-\mathrm{C}(10)$	111.59 (14)
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(10)$	111.32 (11)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	110.86 (14)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	111.34 (17)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	111.23 (12)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	110.64 (16)
$\mathrm{C}(5)-\mathrm{C}(10)-\mathrm{C}(9)$	109.88 (17)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(14)$	111.1
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(15)$	111.1
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{H}(14)$	111.1
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{H}(15)$	111.1
$\mathrm{H}(14)-\mathrm{C}(2)-\mathrm{H}(15)$	109.0
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{H}(1)$	110.7
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{H}(2)$	110.7
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{H}(1)$	110.7
$\mathrm{O}(1)-\mathrm{Pd}(1)-\mathrm{O}(2)-\mathrm{N}(1)$	-113.91 (10)
$\mathrm{O}(2)-\mathrm{Pd}(1)-\mathrm{O}(1)-\mathrm{C}(1)$	-66.76 (14)
$\mathrm{O}(1)-\mathrm{Pd}(1)-\mathrm{O}(2)^{\mathrm{i}}-\mathrm{N}(1)^{\mathrm{i}}$	-66.09 (10)
$\mathrm{O}(2) \mathrm{i}^{\mathrm{i}}-\mathrm{Pd}(1)-\mathrm{O}(1)-\mathrm{C}(1)$	113.24 (14)
$\mathrm{O}(1)^{\mathrm{i}}-\mathrm{Pd}(1)-\mathrm{O}(2)-\mathrm{N}(1)$	66.09 (10)
$\mathrm{O}(2)-\mathrm{Pd}(1)-\mathrm{O}(1)^{\mathrm{i}}-\mathrm{C}(1)^{\mathrm{i}}$	-113.24 (14)
$\mathrm{O}(1)^{\mathrm{i}}-\mathrm{Pd}(1)-\mathrm{O}(2)^{\mathrm{i}}-\mathrm{N}(1)^{\mathrm{i}}$	113.91 (10)
$\mathrm{O}(2)-\mathrm{Pd}(1)-\mathrm{O}(1)^{\mathrm{i}}-\mathrm{C}(1)^{\mathrm{i}}$	66.76 (14)
$\mathrm{Pd}(1)-\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{N}(2)$	-172.54 (13)
$\mathrm{Pd}(1)-\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	6.7 (2)
$\mathrm{Pd}(1)-\mathrm{O}(2)-\mathrm{N}(1)-\mathrm{O}(3)$	2.66 (19)
$\mathrm{Pd}(1)-\mathrm{O}(2)-\mathrm{N}(1)-\mathrm{O}(4)$	-177.21 (12)
$\mathrm{C}(1)-\mathrm{N}(2)-\mathrm{C}(4)-\mathrm{C}(3)$	14.4 (2)
$\mathrm{C}(4)-\mathrm{N}(2)-\mathrm{C}(1)-\mathrm{O}(1)$	175.65 (17)
$\mathrm{C}(4)-\mathrm{N}(2)-\mathrm{C}(1)-\mathrm{C}(2)$	-3.7 (2)
$\mathrm{C}(1)-\mathrm{N}(2)-\mathrm{C}(5)-\mathrm{C}(6)$	95.31 (17)
$\mathrm{C}(1)-\mathrm{N}(2)-\mathrm{C}(5)-\mathrm{C}(10)$	-140.05 (16)
ymmetry codes: (i) $-x+2$,	

$\mathrm{C}(10)-\mathrm{C}(5)-\mathrm{H}(3)$	107.6
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{H}(16)$	109.5
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{H}(17)$	109.5
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{H}(16)$	109.5
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{H}(17)$	109.5
$\mathrm{H}(16)-\mathrm{C}(6)-\mathrm{H}(17)$	108.1
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{H}(12)$	109.4
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{H}(13)$	109.4
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{H}(12)$	109.4
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{H}(13)$	109.4
$\mathrm{H}(12)-\mathrm{C}(7)-\mathrm{H}(13)$	108.0
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{H}(10)$	109.4
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{H}(11)$	109.4
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{H}(10)$	109.4
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{H}(11)$	109.4
$\mathrm{H}(10)-\mathrm{C}(8)-\mathrm{H}(11)$	108.0
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{H}(8)$	109.5
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{H}(9)$	109.5
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{H}(8)$	109.5
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{H}(9)$	109.5
$\mathrm{H}(8)-\mathrm{C}(9)-\mathrm{H}(9)$	108.1
$\mathrm{C}(5)-\mathrm{C}(10)-\mathrm{H}(6)$	109.7
$\mathrm{C}(5)-\mathrm{C}(10)-\mathrm{H}(7)$	109.7
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{H}(6)$	109.7
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{H}(7)$	109.7
$\mathrm{H}(6)-\mathrm{C}(10)-\mathrm{H}(7)$	108.2

$\mathrm{C}(5)-\mathrm{N}(2)-\mathrm{C}(1)-\mathrm{O}(1)$	$4.9(2)$
$\mathrm{C}(5)-\mathrm{N}(2)-\mathrm{C}(1)-\mathrm{C}(2)$	$-174.43(15)$
$\mathrm{C}(4)-\mathrm{N}(2)-\mathrm{C}(5)-\mathrm{C}(6)$	$-74.5(2)$
$\mathrm{C}(4)-\mathrm{N}(2)-\mathrm{C}(5)-\mathrm{C}(10)$	$50.2(2)$
$\mathrm{C}(5)-\mathrm{N}(2)-\mathrm{C}(4)-\mathrm{C}(3)$	$-174.89(17)$
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$172.09(18)$
$\mathrm{N}(2)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$-8.6(2)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$16.71(19)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{N}(2)$	$-18.6(2)$
$\mathrm{N}(2)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	$-179.40(13)$
$\mathrm{N}(2)-\mathrm{C}(5)-\mathrm{C}(10)-\mathrm{C}(9)$	$178.01(11)$
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(10)-\mathrm{C}(9)$	$-57.65(14)$
$\mathrm{C}(10)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	$55.81(17)$
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	$-54.16(16)$
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	$55.18(16)$
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	$-57.20(18)$
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(5)$	$58.08(16)$

Fig. 1

Fig. 2

Fig. 3

